

ISOLATION OF α -CORYMBOLOL, AN EUDESMANE SESQUITERPENE DIOL FROM *CYPERUS ARTICULATUS*

B. NYASSE, R. GHOGOMU TIH, B. L. SONDENGAM, M. T. MARTIN* and B. BODO*

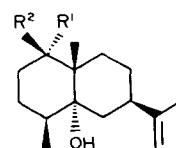
Département de Chimie, Université de Yaoundé, B. P. 812, Yaoundé, Cameroun; *Laboratoire de Chimie, UA 401 CNRS, Muséum national d'Histoire naturelle, 63 rue de Buffon, 75231 Paris Cedex 05, France

(Received 31 March 1987)

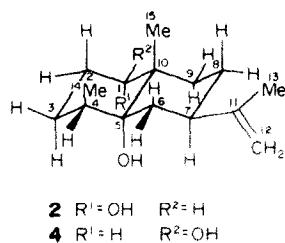
Key Word Index—*Cyperus articulatus*; Cyperaceae; sesquiterpenes; eudesmanes

Abstract—A new sesquiterpenic alcohol, α -corymbolol has been isolated from the rhizomes of *Cyperus articulatus* along with the known corymbolone. The structure and stereochemistry was assigned on the basis of spectroscopic data and the reduction of corymbolone into α -corymbolol and β -corymbolol.

INTRODUCTION


Cyperus articulatus L. is a tropical sedge widely distributed in Cameroon, where it is commonly known as mandassi and its rhizomes used in traditional medicine. The essential oils from the rhizomes of *Cyperus* species are known to contain sesquiterpenes [1-5]. During our investigations on the components of the medicinal plants from Cameroon, we have isolated a new sesquiterpene alcohol from the non-polar extract of the rhizomes of *C. articulatus* and we now report its structure determination.

RESULTS AND DISCUSSION


From the hexane extract of the rhizomes of *C. articulatus* two sesquiterpenes, **1** and **2** were isolated by silica gel column chromatography. Compound **1** was obtained from hexane-ethyl acetate (9:1) fraction, purified by repeated chromatography (hexane-ethyl acetate 17:13) and crystallized from hexane (mp 137°). The EIMS of **1** showed the molecular ion at *m/z* 236 in agreement with the molecular formula $C_{15}H_{24}O_2$. Its IR spectrum exhibited absorptions of hydroxyl (3430 cm^{-1}). The 1H and ^{13}C NMR spectra (Tables 1 and 2) indicated that **1** was identical with corymbolone, isolation from *C. corymbosus* and structure elucidation of which have been recently reported [4].

Further elution of the column with hexane-ethyl acetate (8:2) afforded compound **2** which was purified by repeated column chromatography (dichloromethane-ethyl acetate 17:13) and obtained as a colourless oil, $[\alpha]_D^{25} +43^\circ$ ($CHCl_3$; c 2.9). The ion of highest mass observed at *m/z* 220 in the EIMS of **2** was shifted at *m/z* 221 ($+H^+$) and 238 ($+NH_4^+$) in the Cl spectrum (ionising gas: ammonia) and assigned to a monodehydratation product $C_{15}H_{24}O$, leading to the molecular formula $C_{15}H_{26}O_2$ ($M = 238$) for **2**. Its IR spectrum showed hydroxyl groups (3404 cm^{-1}), a carbon-carbon double bond (1643 cm^{-1}) and no carbonyl absorption. The fifteen carbon atoms were revealed from the ^{13}C NMR spectrum with two being ethylenic (δ 150.00 and 108.36), two bearing oxygen atoms (76.24 CH-O and 77.70 C-O), three methyl, six methylene, two methine groups and one quaternary carbon atom (Table 2).

Acetylation of **2** by Ac_2O -pyridine at room temperature afforded a monoacetyl derivative **3**, still containing a tertiary alcohol function. The 1H NMR spectrum, which was similar to that of corymbolone **1**, displayed an angular methyl group (δ 1.031, 3H, *s*, C-15), a secondary methyl group (δ 1.039, 3H, *d*, $J = 7.8$ Hz, C-14) and an isopropenyl chain (δ 4.710, 1H, *m*, H-12a; 4.724, 1H, *m*, H-12b and 1.740, 3H, *m*, Me-13). The 1H and ^{13}C NMR spectra assignments (Tables 1 and 2), achieved by 1H - 1H 2D COSY and 1H - ^{13}C 2D correlation techniques, enabled the distinction of two substructures *a* and *b*. The signal centred at δ 3.469 (1H) was indicative of a methine proton ($CH-1$) geminal to an hydroxyl group that was coupled to a methylene (CH_2-2), connected itself to another methylene group (CH_2-3). The methine proton at δ 1.694 ($CH-4$) was linked to a methyl group (δ 1.039) and to this methylene-3, leading to the substructure *a*: $-O-CH-CH_2-CH_2-CH-Me$. The methine protons H-1 and H-4 were equatorial since their coupling constant values are low (< 5 Hz). The signal at δ 2.584 was assigned to the methine proton H-7; it was coupled with an isolated methylene (CH_2-6) and with an other methylene (CH_2-8) itself coupled to methylene CH₂-9. The chemical shift of H-7 indicated that it was vicinal to a double bond (C-11, C-12) giving thus the second substructure *b*: $-CH_2-CH_2-CH(iC_3H_5)-CH_2-$. The H-7 was axial as it exhibited two large coupling constants (13 Hz) with vicinal protons H-6a and H-8a.

1	$R^1 = R^2 = O$	
2	$R^1 = OH$	$R^2 = H$
3	$R^1 = OAc$	$R^2 = H$
4	$R^1 = H$	$R^2 = OH$
5	$R^1 = H$	$R^2 = OAc$

Hence, structure **2** was proposed for this compound, with the secondary alcohol been axial. This was confirmed by comparing it with the reduction products of corymbolone **1** with $NaBH_4$ in ethanol. This reaction gave two products A and B which were separated by column chromatography. Compound A (69% of the crude mixture) was identical to **2** (R_f , $[\alpha]_D$, IR, MS, 1H NMR).

The minor compound B (31% α) from the reduction of **1**, was found to be an isomer of **2**. Its 1H NMR spectrum closely related to that of **2** and it was assigned by using $^1H-^1H$ 2D COSY which showed the H-1 geminal to an hydroxyl group at δ 3.827 (1H, *dd*, $J = 4.8$ and 11.4 Hz). Since the coupling with one of the protons at C-2 had a high value, characteristic of a *trans*-diaxial coupling, the H-1 must be axial and the hydroxyl group equatorial, thus in the β -position. These results suggested structure **4** for the isomer B. The reaction of **4** with Ac_2O -pyridine afforded a mono acetate **5**.

Reduction of the carbonyl group of **1** by $NaBH_4$ introduced the hydride ion mainly opposite to the 5-hydroxyl group, as observed in the reduction of cholestan-5 α -ol-3-one, suggesting the hydroxyl group exercises mainly a steric control [6].

The names α -corymbolol and β -corymbolol are proposed for **2** and **4**, respectively, in analogy to corymbolone (**1**).

EXPERIMENTAL

The air-dried rhizomes of *Cyperus articulatus* harvested in Kribi (South Cameroon, December 1984), were powdered and extracted with *n*-hexane. The hexane was evaporated under red.

Table 2. ^{13}C NMR spectral data of corymbolone (**1**), α -corymbolol (**2**) and β -corymbolol (**4**) (62.5 MHz, $CDCl_3$, TMS)

C	1	2	4	
	δ	δ	δ	
1	215.52	s	76.24	<i>d</i>
2	34.14	<i>t</i>	24.77	<i>t</i>
3	30.08	<i>t</i>	22.36	<i>t</i>
4	40.50	<i>d</i>	41.40	<i>d</i>
5	78.48	<i>s</i>	77.70	<i>s</i>
6	27.95	<i>t</i>	38.24	<i>t</i>
7	39.29	<i>d</i>	39.77	<i>d</i>
8	25.41	<i>t</i>	25.98	<i>t</i>
9	37.17	<i>t</i>	32.65	<i>t</i>
10	51.16	<i>s</i>	39.67	<i>s</i>
11	149.43	<i>s</i>	150.00	<i>s</i>
12	108.78	<i>t</i>	108.36	<i>t</i>
13	20.97	<i>q</i>	21.10	<i>q</i>
14	20.26	<i>q</i>	17.04	<i>q</i>
15	17.66	<i>q</i>	21.77	<i>q</i>

^{a, b} May be reversed.

Table 1. 1H NMR spectral data of corymbolone (**1**), α -corymbolol (**2**) and β -corymbolol (**4**) (500.13 MHz, $CDCl_3$, TMS)

H	1	2	4			
	δ	J (Hz)	δ	J (Hz)	δ	J (Hz)
1a					3.827	<i>dd</i>
1e						11.4, 4.8
2a	2.675	<i>ddd</i>	16.3, 10.0, 6.3	2.087	<i>dddd</i>	14.6, 14.5, 4.6, 2.7
2e	2.423	<i>m</i>		1.619	<i>dddd</i>	14.5, 4.4, 3.0, 2.4
3a	1.682	<i>m</i>		2.379	<i>dddd</i>	14.6, 14.1, 4.5, 4.4
3e	2.390	<i>m</i>		1.227	<i>dddd</i>	14.1, 4.6, 3.0, 1.6
4e	1.860	<i>m</i>		1.694	<i>qdd</i>	7.8, 4.5, 1.6
6a	1.893	<i>dd</i>	13.7, 12.8	1.772	<i>dd</i>	13.6, 12.7
6e	1.438	<i>ddd</i>	13.7, 3.9, 2.0	1.221	<i>ddd</i>	13.6, 4.1, 1.6
7a	2.321	<i>dddd</i>	12.8, 12.8, 3.9, 3.9	2.584	<i>dddd</i>	13.1, 12.7, 4.1, 4.0
8a	1.374	<i>dddd</i>	13.7, 13.7, 13.7,	1.518	<i>dddd</i>	13.1, 13.1, 13.1,
		3.9			4.1	
8e	1.682	<i>m</i>		1.651	<i>ddddd</i>	13.1, 4.3, 4.0, 3.1,
					1.573	<i>ddddd</i>
					1.6	13.4, 4.5, 4.2, 2.9, 1.7
9a	1.900	<i>ddd</i>	14.0, 13.7, 3.2	2.380	<i>ddd</i>	13.1, 13.0, 4.3
9e	1.596	<i>ddd</i>	14.0, 3.6, 3.2	0.961	<i>ddd</i>	13.0, 4.1, 3.1
12a	4.752	<i>s</i>		4.710	<i>m</i>	
12b	4.752	<i>s</i>		4.724	<i>m</i>	
13	1.752	<i>s</i>		1.740	<i>m</i>	
14	1.195	<i>d</i>	7.5	1.039	<i>d</i>	7.8
15	1.240	<i>s</i>		1.031	<i>s</i>	0.973
					0.956	<i>s</i>

pres. and the oily residue remaining (60 g) was chromatographed over a silica gel column. Fractions eluted with *n*-hexane-EtOAc (9:1), yielded a simplified mixture (1 g) which was further purified over a silica gel column in a similar way. The fraction eluted with *n*-hexane-EtOAc (17:13) provided one major component which on crystallization in *n*-hexane gave 0.28 g of corymbolone (**1**).

Further elution of the first column with *n*-hexane-EtOAc (80:20) yielded a mixture, which on repeated chromatography over silica gel columns with CH₂Cl₂-EtOAc (19:1) gave 0.04 g of α -corymbolol (**2**).

The 2D ¹H-¹H COSY and ¹³C NMR spectra were recorded on a WM 250 Bruker and the 1D ¹H NMR spectra on a WM 500 Bruker.

Corymbolone (**1**). Colourless crystals, mp 137° (*n*-hexane). IR ν_{max} cm⁻¹: 3430, 3080, 2959, 1692, 1639, 1456, 1417, 1370, 1343, 1281, 1175, 995, 887. MS (EI, 70 eV, 200°), *m/z*(rel. int.): 236 [M]⁺ (14), 218 (12), 203 (12), 193 (7), 175 (17), 135 (27), 109 (23), 91 (17), 79 (26), 67 (53), 55 (84), 41 (100).

α -Corymbolol (**2**). Oil, $[\alpha]_{\text{D}}^{25} + 25^\circ$ (CHCl₃; c2.9); IR: ν_{max} cm⁻¹: 3304, 3081, 2926, 2874, 1643, 1453, 1381, 1264, 1216, 1169, 1131, 1104, 1051, 995, 911, 886. MS (EI, 70 eV, 200°), *m/z*(rel. int.): 220 [M - H₂O]⁺ (9), 202 (64), 187 (33), 159 (17), 145 (22), 121 (23), 109 (87), 83 (100). MS(Cl, NH₄OH) *m/z*: 238 [M - H₂O + NH₄]⁺, 221 [M - H₂O + H]⁺.

Monoacetyl α -corymbolol (**3**). To 50 mg of **2** dissolved in dry pyridine (4 ml), 6 ml of Ac₂O were added, the mixture was kept at room temp. for 24 hr and the crude mixture was treated in the usual way. The residue was chromatographed on a silica gel column with CH₂Cl₂ as eluent to give 5 mg of **3**. Oil; IR: ν_{max} cm⁻¹: 3592, 2928, 1747, 1643, 1458, 1377, 1238, 1174, 1130, 1036, 1019, 986, 886, 800. MS (EI, 70 eV, 200°), *m/z*(rel. int.): 280 [M]⁺ (0.5), 220 (4), 202 (100), 187 (40).

Reduction of corymbolone. To 90 mg of corymbolone dissolved in EtOH (5 ml) an excess of NaBH₄ was added in several portions and the mixture was stirred at room temp. for 3 hr and then worked-up as usual to give a oily residue (89 mg). TLC showed it to be composed of two products A (*R_f*: 0.41) **2** and B (*R_f*: 0.28) **4** (Silica gel, CH₂Cl₂-EtOAc, 85:15).

β -Corymbolol (**4**). Oil, $[\alpha]_{\text{D}}^{25} + 25^\circ$ (CHCl₃; c0.35); IR: ν_{max} cm⁻¹: 3500, 3081, 2926, 2870, 1450, 1380, 1260, 1215, 1175, 1131, 1100, 1049, 995, 911, 864. MS (EI, 70 eV, 200°), *m/z*(rel. int.): 220 [M - H₂O]⁺ (8), 202 (12), 187 (12), 135 (56), 109 (100), 96 (60), 81 (40), 69 (44).

Monoacetyl β -corymbolol (**5**). Prepared in the same way as **3**, oil. IR: ν_{max} cm⁻¹: 3510, 3080, 2929, 2869, 1718, 1645, 1455, 1372, 1251, 1168, 1077, 1026, 981, 962, 887, 796. MS (EI, 70 eV, 200°), *m/z*: 280 [M]⁺.

Acknowledgements—We thank Dr M. Mahajlet for collection and identification of plant material, Dr J. P. Brouard for mass spectra and Dr D. Davoust for the 500 MHz NMR spectra.

REFERENCES

1. Couchman, F. M., Pinder, A. R. and Bromham, N. H. (1964) *Tetrahedron* **20**, 2037.
2. Neville, G. A., Nigam, I. C. and Holmes, J. L. (1968) *Tetrahedron* **24**, 3891.
3. Hikino, H. and Aota, K. (1976) *Phytochemistry* **15**, 1265.
4. Garbarino, J. A., Gambaro, V. and Chamy, M. C. (1985) *J. Nat. Prod.* **48**, 323.
5. Garbarino, V., Chamy, M. C. and Gambaro, J. A. (1985) *Phytochemistry* **24**, 2726.
6. Akhtar, M. and Marsh, S. (1966) *J. Chem. Soc. (C)* 937.